Connor Robertson

📳 (+1) 949-245-5236 | 🜌 cnr.robertson@gmail.com | 🏫 cnrrobertson.github.io | 🕜 cnrrobertson | 🛅 Connor Robertson

Education

PhD - Applied Mathematics New Jersey Institute of Technology	2018 - 2023
BS - Applied and Computational Mathematics Brigham Young University	2011 - 2018

Experience

Calibration of stochastic agent-based models for epidemiology	2023 -
Postdoctoral researcher - Sandia National Laboratories	Livermore, CA
Developing machine learning surrogate models to efficiently approximate the agent based models. Surrogates used to pe	erform Bayesian

inference or variational inference to calibrate model parameters. Includes time series analysis, random forests, gaussian processes, neural and universal differential equations, Markov chain monte carlo, and Stein variational inference.

Data-driven discovery of governing equations for active nematics	2019 - 2023
Research Assistant - New Jersey Institute of Technology	Newark, NJ

Discovering the governing partial differential equation of an active nematic system directly from experimental video. Includes image processing, numerical differentiation of noisy data, sparse regression, symbolic generation of differential terms, continuum models of active nematic liquid crystal systems, and pseudospectral PDE simulations.

Forecasting bacterial growth and interaction via recurrent neural networks	2021 - 2022
Graduate Student Research Awardee (SCGSR) - Oak Ridge National Laboratory	Remote

Using images of mutant and natural bacterial strains from the researchers at Oak Ridge National Lab, modified PredRNN recurrent network architecture to model and predict population and colony growth. Quantified quality of fit via various image and biological metrics. Included image processing, recurrent neural network architecture, and accelerating agent-based modeling approaches.

Water main break prediction for water utilities

Cofounder - Coventina LLC.

Developed machine learning toolkit used to forecast water main breaks for public works departments. Research and development consisted of data collection from various public and private sources, cleaning, imputation, regression analysis, tree-based model tuning, validation, and balance of physical models and machine learning predictions.

Determining optimal new facility locations via network theory	
Research Assistant - Brigham Young University	

Undergraduate research team focused on applying mathematical concepts to new problems in society and industry. Projects include: Use of network theory and Markov Chains for facility location problems in operations research and utilizing statistical modeling to optimize infrastructure decisions for water access in developing countries.

Developing computational math curriculum

Project Assistant - Brigham Young University

Editing and writing academic programming assignments in Python and managing lab computers and servers. Assignments include curriculum on: web scraping, serialization, noSQL, parallel processing techniques, Quasi-Newton optimization, and Arnoldi method for eigenvalue and eigenvector numerical computation.

Conferences

Talks

Bayesian Calibration of Stochastic Agent Based Model via PCA Based Surrogate Modeling SIAM CONFERENCE ON UNCERTAINTY QUANTIFICATION 2024 Trieste, Italy

Data-driven continuum modeling of active nematics via sparse identification of nonlinear dynamics2023SIAM CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERINGAmsterdam, Netherlands

Data-driven continuum modeling of active nematics via sparse identification of nonlinear dynamics2022ANNUAL MEETING OF THE APS DIVISION OF FLUID DYNAMICS (APS DFD)Indianapolis, Indiana

2016 - 2018 Provo, UT

2018

Provo, UT

2017 - 2018 Provo, UT

Data-driven continuum modeling of active nematics via sparse identification of nonlinear dynamics 2	
ANNUAL MEETING OF THE AMERICAN PHYSICAL SOCIETY (APS MARCH)	Chicago, Illinois
Neural networks for function approximation and data-driven modeling	2021
Machine Learning and Optimization Seminar - Department of Mathematical Sciences NJIT	Newark, New Jersey
Facility location using Markov chains	2018
CPMS Student Research Conference - Brigham Young University	Provo, Utah
Efficiency of Water Distribution in Water Poor Areas of the World	2017
Student Days - SIAM Annual Meeting	Pittsburgh, Pennsylvania
Posters	
National Academy of Inventors - NJIT Chapter Workshop	2022
Data-driven discovery of PDEs for active nematic systems	Newark, New Jersey
GAMM Juniors' Summer School	2020
Discovering governing equations of an active nematic system using PDE-Find	(virtual) Magdeburg, Germany
Frontiers in Applied and Computational Mathematics	2019
Aligning Self-Propelling Particles in Non-trivial Domains	Newark, New Jersey
Seminar Organization	
Department of Mathematical Sciences - NJIT	2022 - 2023
Machine Learning and Optimization Seminar Chair	Newark, New Tersey

Click here to see more information about the seminar or see my website.

Honors

- 2023 Outstanding Graduate Student Award, College of Science and Liberal Arts NJIT
- 2023 Chair: Machine Learning & Optimization Seminar, Department of Mathematical Sciences NJIT
- 2023 DSECOP Fellow, Data Science Education Community of Practice APS
- 2021 Graduate Student Research Award (SCGSR), US Department of Energy ORNL (remote)
- 2021 Ahluwalia Doctoral Fellowship, Deparment of Mathematical Sciences NJIT
- 2020 (Honorable mention) Graduate Research Fellowship Program, National Science Foundation

Qualifications and Skills

Clearance	Department of Energy Q-level
Programming Languages	Python, Julia, Matlab, R, Mathematica, C++
Project Keywords	Time series analysis, Bayesian inference, Variational inference, Neural ODEs, differentiation of noisy data, sparse basis pursuit and regression, recurrent neural networks for image prediction, pseudospectral PDE solvers, Markov chains for NLP, optimization (simplex method, Newton's method, varieties of gradient descent, etc.), simple facial recognition, numerical solvers for ODES, and various applications of machine learning algorithms
Spoken Languages	English, Spanish

Professional Associations

Society for Industrial and Applied Mathematics	2017 -
American Physical Society	2022 - 2024

Publications

Performing Video Frame Prediction of Microbial Growth with a Recurrent Neural Network Frontiers in Microbiology: Systems Microbiology 2023 Click to open

 Investigating the growth of an engineered strain of Cyanobacteria with an Agent-Based Model and a Recurrent

 Neural Network
 2021

 BIORXIV
 Click to open

Using Survey Data and Mathematical Modeling to Prioritize Water Interventions in Developing Countries 2021 WATER RESOURCE MANAGEMENT Click to open