Convolutional Neural Network - CNN

Oultline
1. Why convolutional neural network

2. Comparison of ANN with CNN in a simple example
3. The structure of convolutional neural network
- What is filter or convolution

- What is stride
- What is padding
- What is pooling (Max and Average pooling)

4. Looking at different CNN structure (i.e. AlexNet, GoogleNet, ResNet, ...

5. How to code convolutional neural network in python
6. Hands on project
- What is transfer learning

- Apply convolutional neural network for image classification



1. Why convolutional neural network

» Convolutional neural networks (CNNSs) inspired by the study of the brain’s visual cortex.

» Huble and Wiesel (1958) showed that many neurons in the visual cortex have a small local
receptive field . More specifically they showed that some neurons react only to images of
horizontal lines while others react only to lines with different orientations.

» They also showed some neurons might have larger receptive fields and they react to more
complex patterns that are combinations of the lower-level patterns.

» CNNSs has been used in image recognition since the 1980s.

» Image search service, self-driving cars, automatic video classification systems.



1. Why convolutional neural network
» Why not simply use a deep neural network with fully connected layers for image recognition
task?"
* This might work for small images
» It breaks down for large images because of the huge number of required parameters
» As an example:
e Suppose we have a 100 by 100 — pixel image that has 10,000 pixels.
e The input layer should have 10,000 neurons
« If we only have one hidden layer with a 1000 neurons in it, then for the fully connected
network with just one layer we have at least 10,000,000 connections. CNNs solve this

problem using partially connected layers and weight sharing.



2. Comparison of ANN with CNN in a simple example
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2. Comparison of ANN with CNN in a simple example
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3. The structure of convolutional neural network
» Shared weights and biases - ANN
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3. The structure of convolutional neural network
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3. The structure of convolutional neural network

» Convolutional Layer
* Neurons in the convolutional layer are not connected to every single pixel in the

Input image but only to pixels in their receptive fields.

e This architecture allows the network to concentrate on small low-level features in the

first hidden layer, then assemble them into larger higher-level features in the next

hidden layer and so on.
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3. The structure of convolutional neural network
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3. The structure of convolutional neural network
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3. The structure of convolutional neural network

» Activation and pooling
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3. The structure of convolutional neural network

» Stride and Padding

J
¥ S first hi;g:e.'n layer
:‘\ /ureceptive fields
: , =2 > Input layer
Stride height Sh = S 78, / va iy
( -_ £ +

zero padding

Heightofthe f = 3
receptive field h

: l — \ /4‘\ /4\\ /4
Weight of the f = 3 Zero padding A S
receptive field w S, = 2 Stride weight

Connections between layers and zero padding Reducing dimensionality using a stride of 2



3. The structure of convolutional neural network

» Stride and Padding

Convolution Operation with Stride Length =2

SAME padding: 5x5x1image is padded with Os to create a 6x6x1image

Image provided from MathWorks



3. The structure of convolutional neural network
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Schematic representation of a convolutional neural network with two hidden layers
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4. Looking at different CNN structure

AlexNet — won the 2012 ImageNet challenge
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4. Looking at different CNN structure

ResNet
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5. How to code convolutional neural network in python
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5. How to code convolutional neural network in python

TRANSFER LEARNING
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6. Hands on project

Convolutional Network Demo from 1993
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We are going to use the handwritten digit dataset and using convolutional neural network for digit classi

6. Hands on project

Open your Jupyter Notebook for the rest ...



