Recurrent Neural Network Workshop

Austin Juhl

Resources

- Andrew Ng Coursera
 - https://www.coursera.org/learn/nlp-sequence-models
- Shervine Amidi Stanford
 - https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
- Judahsemi
 - https://github.com/judahsemi/Dino-Name-Generator

Sequence Models

 Machine Learning models that can input and/or output sequence data.

• Examples:

Sentiment Classification

Music Generation

Translation

Video Activity Recognition

"Good morning" → "Buongiorno"

Why not use a standard network?

- Multi-Layer Perceptron (MLP)
 - Cannot processes input of varying lengths.
 - Does not consider historical (or future) information.

Notation and Review

 $x^t \in \mathbb{R}^k$ - t^{th} training element with k features.

 $y^t \in \mathbb{R}^l$ - t^{th} output element with l features.

 $a^t \in \mathbb{R}^m$ - t^{th} activation value with m features.

 $b_a \in \mathbb{R}^m$ - activation bias.

 $W_a \in \mathbb{R}^{m,k}$ - activation weight.

 $b_{y} \in R^{l}$ - output bias.

 $W_y \in \mathbb{R}^{l,m}$ - output weight.

 ϕ - arbitrary activation function

MLP:

$$a^{t} \coloneqq \phi_{1}(W_{a}x^{t} + b_{a})$$
$$y^{t} \coloneqq \phi_{2}(W_{y}a^{t} + b_{y})$$

Recurrent Neural Network (RNN)

 $x^{i,t} \in \mathbb{R}^k$ - t^{th} input element of i^{th} sequence with k features.

 $y^{i,t} \in \mathbb{R}^l$ - t^{th} output element of i^{th} sequence with l features.

 T_{χ} - input sequence length.

 T_{ν} - output sequence length.

RNN:

$$a^{t} \coloneqq \phi(W_{aa}a^{t-1} + W_{ax}x^{t} + b_{a})$$
$$y^{t} \coloneqq \phi(W_{y}a^{t} + b_{y})$$

Two layered RNN

RNN:

$$a^{t} \coloneqq \phi(W_{aa}a^{t-1} + W_{ax}x^{t} + b_{a})$$

$$p^{t} \coloneqq \phi(W_{aa}p^{t-1} + W_{ax}a^{t} + b_{a})$$

$$y^{t} \coloneqq \phi(W_{y}p^{t} + b_{y})$$

- One-to-One
 - $T_x = T_y = 1$
 - MLP

- One-to-Many
 - $T_x = 1, T_y > 1$
 - Music generation.

- Many-to-One
 - $T_x > 1, T_y = 1$
 - Sentiment Classification.

"This movie is very bad" → ★☆☆

- Many-to-Many
 - $T_x = T_y$
 - Name recognition.

"My name is Austin." → 0 0 0 1

- Many-to-Many
 - $T_x \neq T_y$
 - Translation.

"Good morning" → "Buongiorno"

Backpropagation Through Time

- Loss for the Sequence:
 - $L(\hat{y}, y) = \sum_{t=1}^{T_y} L^t(\hat{y}^t, y^t)$
 - MSE, Cross Entropy, etc.
- Backpropagation:
 - Calculate the derivative of the loss \boldsymbol{L} with respect to the parameters W_a , b_a , W_y , and b_y .
 - Gradient decent is used to update the parameters.

Vanishing Gradient

$$\frac{\partial \mathbf{L}}{\partial W_{aa}} = \frac{\partial L^1}{\partial W_{aa}} + \dots + \frac{\partial L^{T_X}}{\partial W_{aa}}$$

$$\frac{\partial L^{1}}{\partial W_{aa}} = \frac{\partial L^{1}}{\partial y^{1}} \left(\frac{\partial y^{1}}{\partial a^{1}} \left(\frac{\partial a^{1}}{\partial W_{aa}} + \frac{\partial a^{1}}{\partial a^{0}} \right) \right)
= \frac{\partial L^{1}}{\partial y^{1}} \frac{\partial y^{1}}{\partial a^{1}} \frac{\partial a^{1}}{\partial W_{aa}} + \frac{\partial L^{1}}{\partial y^{1}} \frac{\partial y^{1}}{\partial a^{1}} \phi'(W_{aa}a^{0} \cdots) W_{aa}$$

$$\frac{\partial L^{2}}{\partial W_{aa}} = \frac{\partial L^{2}}{\partial y^{2}} \left(\frac{\partial y^{2}}{\partial a^{2}} \left(\frac{\partial a^{2}}{\partial W_{aa}} + \frac{\partial a^{2}}{\partial a^{1}} \left(\frac{\partial a^{1}}{\partial W_{aa}} + \frac{\partial a^{1}}{\partial a^{0}} \right) \right) \right) \qquad \mathbf{x}^{1} \qquad \mathbf{x}^{2}$$

$$= \frac{\partial L^{2}}{\partial y^{2}} \frac{\partial y^{2}}{\partial a^{2}} \frac{\partial a^{2}}{\partial W_{aa}} + \frac{\partial L^{2}}{\partial y^{2}} \frac{\partial y^{2}}{\partial a^{2}} \frac{\partial a^{1}}{\partial W_{aa}} \phi'(W_{aa}a^{1} \cdots) \underline{W_{aa}} + \frac{\partial L^{2}}{\partial y^{2}} \frac{\partial y^{2}}{\partial a^{2}} \phi'(W_{aa}a^{1} \cdots) \phi'(W_{aa}a^{0} \cdots) \underline{W_{aa}}^{2}$$

$$+\frac{\partial L^2}{\partial y^2}\frac{\partial y^2}{\partial a^2}\phi'(W_{aa}a^1\cdots)\phi'(W_{aa}a^0\cdots)\underline{W_{aa}^2}$$

RNN elements are affected mostly locally.

Alternate Form

Let $W_a = [W_{aa} W_{ax}]$.

$$a^{t} \coloneqq \phi(W_{aa}a^{t-1} + W_{ax}x^{t} + b_{a})$$

$$y^{t} \coloneqq \phi(W_{y}a^{t} + b_{y})$$

$$a^{t} \coloneqq \phi(W_{a}[a^{t-1}; x^{t}] + b_{a})$$

$$y^{t} \coloneqq \phi(W_{y}a^{t} + b_{y})$$

Gated Recurrent Unit (GRU)

• Overcomes the vanishing gradient problem by using gates to determine which information should be retained and updated.

$$\Gamma_r = \sigma(W_r[a^{t-1}; x^t] + b_r)$$

$$\Gamma_u = \sigma(W_u[a^{t-1}; x^t] + b_u)$$

$$\tilde{a}^t = \phi(W_a[\Gamma_r * a^{t-1}; x^t] + b_a)$$

 $a^t = \Gamma_u * \tilde{a}^t + (1 - \Gamma_u) * a^{t-1}$

Retain previous information?
How much of the past should matter now?

Dino-Name Generator

- Model: GRU or LSTM
- Training set: List of dinosaur names
- Goal: Generate new dinosaur names

Resources

- Andrew Ng Coursera
 - https://www.coursera.org/learn/nlp-sequence-models
- Shervine Amidi Stanford
 - https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
- Judahsemi
 - https://github.com/judahsemi/Dino-Name-Generator