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An Example of ML

Binary Classification Problems with many layers

▸ Provided feature data and their labels (say, cats and dogs).

▸ Learn a function between features and labels (through
several filters, say, eye shape, fur density, etc.). Error
minimisation takes place here.

▸ Test this function/quality of minimisation on new data.
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ML Algorithmic Setup

▸ A probability measure µ that represents given labelled
data.

▸ An unknown labelling function G (true relation).
▸ A metric d on appropriate function spaces.

Choose your favourite loss (error) L and minimise with
stochastic gradient descent (SGD) on

min
w

⎧⎪⎪
⎨
⎪⎪⎩

1
N

N
∑
n=1

L (hw (xn) ,yn)

⎫⎪⎪
⎬
⎪⎪⎭

= f (w)

Write

∇f (w) =
1
N

N
∑
n=1

∇fn (w) ≈
1
∣B∣
∑
n∈B

∇fn (w)

and the update adaptively,

w ← [ w −
µt

∣B∣
∑
n∈B

∇fn (w) ,with µt
→ 0 appropriately.
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Convergence

Law of large numbers yields

1
N

N
∑
n=1

L (hw (xn) ,yn)
a.s.
→ Eµ [L (hw (x) ,y)]

while CLT yields

√
N

⎛

⎝

1
N

N
∑
n=1

L (hw (xn) ,yn) −Eµ [L (hw (x) ,y)]
⎞

⎠

law
→ N (0, σ2

(w))



A Practical Problem in Loss Minimisation

Loss function characteristics
▸ Non-convex.

▸ High-dimensional domain Ω (lots of parameters!).
▸ Exponentially many critical points of various indices, i.e.

some negative eigenvalues of the Hessian.

Problems with GD/SGD

▸ Searcher gets stuck in a critical point or flat region, and
thus long search time.

▸ Perturbing the gradient in this case (thereby changing
energy landscape) is of insignificant improvement.
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Remedies

▸ Shrink search space by specifying a “floor” (existence
proved), a level set of the loss in which bulk of the low
index critical points lie in the absence of an external field.

Advantage
Floor has energy low enough that global and local minima are
about the same.
▸ Add a tunable random external field and reduce strength

as SGD progresses (AnnealedSGD [3]).

L (x,w) = ∑
n

xi1,...,inwi1 . . .win +∑
n

rnwin

where rn ∼ N (0,v2), v tunable.

Advantage
From complex terrain to degeneracy without affecting the
locations of local minima of the original problem (proved in [3]).
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Non-sharp phase transition

There exists a threshold of noise such that a non-sharp phase
transition occurs.



Spin Glass overview

Ferromagnetism model

▸ Particles with magnetic spins ±1 on Zd .
▸ Random interaction, short (sparse) or long (dense) ranged.
▸ Minimising total “energy” finds the equilibrium state.
▸ Perturb to check stability.

Nearest neighbor constant: Ising
Nearest neighbor random: Edward-Anderson

Long range random: Sherrington-Kirkpatrick
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Spin Glass Setup

Consider w = (w1, . . . ,wn) an array of ±1’s sitting on some
domain Ω, e.g. Zd . Let xij be centered correlated Gaussian
variables. Then, the Hamiltonian of w , a 2-spin system, is given
by

−H (w) = ∑
i,j

xijwiwj +∑
j

hjwj

where h is some external field. The above example is the
Sherrington-Kirkpatrick model under magnetic field h.

Properties of Spin Glass

▸ If xij is constant, then under h the energy minimiser is
when all spins align.

▸ If xij is random, then we obtain a glassy state, where
energy landscape becomes rugged. Local minima are
hard to find or even exist.

▸ Extend w ∈ Sn−1 (
√

n) for continuous interpretation.
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A Theoretical Result with Zero-one loss

Feature vector ξ (data) and p hidden layers.

Target labels
Y t ∼ Ber (q) ∈ {0,1} modeled as (with denoising autoencoders)

Y = g
⎛
⎜
⎝

W p+1g
⎛

⎝
W p . . .g (W 1ξ −

d
3

1n) −
d
3

1n
⎞

⎠
. . . −

d
3

1n

⎞
⎟
⎠

where d is expected degree of nodes and g is some
thresholding function. Suppose Y t ∼ Ber(q). Then up to a
constant,

EY t [Ŷ −Y t
]

law
= −Hn,p (w)

where the Hamiltonian

−Hn,p (w) =
J

n(p−1)/2
n
∑

i1,...,ip=1
Ji1,...,ipwi1,...,ip

with Ji1,...,ip standard Gaussian and w ∈ Sn−1 (
√

n).
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Take-aways

▸ ML algorithms and spin glass systems have some
similarities but not entirely analogous – weights and graph
connectivity are still quite different notions.

▸ [2] conjectures that a more universal yet undiscovered
phenomenon exists, and ML algorithms and spin glasses
are mere special cases of it.

▸ Statistical mechanics is a subject worth studying to
facilitate (mean-field) analysis of algorithms with random
features on high-dimensional problems.
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