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Gérard Ben Arous (Mathematician)

» Director of Courant (2011-2016)
» A probabilist working on Spin Glass, large deviations.

» For today’s work: theoretical basis for minima search of
random functions in high dimensions.

Yann LeCun (Computer Scientist)

» Chief Al scientist at Facebook, Turing award.

» Professor at NYU CS, Data Science, Neural Science, EE
and CE.

» A computer scientist working on Al, machine learning,
computer vision and computational neuroscience.

» For today’s work: gradient-based machine learning
aloorithmic setup.
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An Example of ML

Binary Classification Problems with many layers

» Provided feature data and their labels (say, cats and dogs).

» Learn a function between features and labels (through
several filters, say, eye shape, fur density, etc.). Error
minimisation takes place here.

» Test this function/quality of minimisation on new data.
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ML Algorithmic Setup

» A probability measure u that represents given labelled
data.

» An unknown labelling function G (true relation).

» A metric d on appropriate function spaces.

Choose your favourite loss (error) L and minimise with
stochastic gradient descent (SGD) on

mmlln{ ZL(hw(Xn) Yn)}:f(w)
Write

neB
and the update adaptlvely,

weaw- L Z v, (w) ,with ! — 0 appropriately.
’B| neB



Convergence

Law of large numbers yields

1
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while CLT yields
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A Practical Problem in Loss Minimisation

Loss function characteristics

» Non-convex.
» High-dimensional domain Q (lots of parameters!).

» Exponentially many critical points of various indices, i.e.
some negative eigenvalues of the Hessian.

Problems with GD/SGD
» Searcher gets stuck in a critical point or flat region, and
thus long search time.

» Perturbing the gradient in this case (thereby changing
energy landscape) is of insignificant improvement.
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Remedies

» Shrink search space by specifying a “floor” (existence
proved), a level set of the loss in which bulk of the low
index critical points lie in the absence of an external field.

Advantage

Floor has energy low enough that global and local minima are
about the same.

» Add a tunable random external field and reduce strength
as SGD progresses (AnnealedSGD [3]).

where r, ~ /\/(O, v2), v tunable.

Advantage

From complex terrain to degeneracy without affecting the
locations of local minima of the original problem (proved in [3]).



Non-sharp phase transition

There exists a threshold of noise such that a non-sharp phase

transition occurs.

(A) Exponential regime: Local min-
ima are seen here as isolated dots
surrounded by high energy barriers
while saddle points are seen as nar-
row connected regions, viz., regions
where the gradient is very small in
all but a few directions.

(B) Polynomial regime: The num-
ber of isolated clusters, i.e.. local
minima, is significantly smaller as
compared to Fig. 2a. As the discus-
sion in Sec. 4.3 predicts, the energy
landscape seems to be full of saddle
points in the polynomial regime.

Local minima: Total trivialization 3t

. ‘u

(C) Trivial regime: Gradient de-
scent always converges to the same
location. The average cosine dis-
tance (on §"~! (y/n)) here is 0.02 as
compared to 1.16 for Fig. 2a which
suggests that this is indeed a unique
local minimum.
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Spin Glass overview

Ferromagnetism model

» Particles with magnetic spins +1 on Z9.

» Random interaction, short (sparse) or long (dense) ranged.
» Minimising total “energy” finds the equilibrium state.

» Perturb to check stability.
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Nearest neighbor constant: Ising
Nearest neighbor random: Edward-Anderson
Long range random: Sherrington-Kirkpatrick



Spin Glass Setup

Consider w = (wy,...,wp) an array of +1’s sitting on some
domain Q, e.g. Z9. Let x;i be centered correlated Gaussian
variables. Then, the Hamiltonian of w, a 2-spin system, is given
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Spin Glass Setup

Consider w = (wy,...,wp) an array of +1’s sitting on some
domain Q, e.g. Z9. Let x;i be centered correlated Gaussian
variables. Then, the Hamiltonian of w, a 2-spin system, is given
by

if

where his some external field. The above example is the
Sherrington-Kirkpatrick model under magnetic field h.

Properties of Spin Glass

—H (w) =3 xjwiw; + 3 hiw;
j

» If x; is constant, then under h the energy minimiser is
when all spins align.

» If x; is random, then we obtain a glassy state, where
energy landscape becomes rugged. Local minima are
hard to find or even exist.

» Extend w € S"' (1/n) for continuous interpretation.



A Theoretical Result with Zero-one loss

Feature vector ¢ (data) and p hidden layers.



A Theoretical Result with Zero-one loss

Feature vector ¢ (data) and p hidden layers. Target labels
Y!~ Ber(q) € {0,1} modeled as (with denoising autoencoders)

d d d
Yg(wp+1g(wp...g(w1g§1n)§1n)...§1n)

where d is expected degree of nodes and g is some
thresholding function.



A Theoretical Result with Zero-one loss

Feature vector ¢ (data) and p hidden layers. Target labels
Y!~ Ber(q) € {0,1} modeled as (with denoising autoencoders)

d d d
Yg(wp+1g(wp...g(w1g§1n)§1n)...§1n)

where d is expected degree of nodes and g is some
thresholding function. Suppose Y! ~ Ber(q).



A Theoretical Result with Zero-one loss

Feature vector ¢ (data) and p hidden layers. Target labels
Y!~ Ber(q) € {0,1} modeled as (with denoising autoencoders)

d d d
Yg(wp+1g(wp...g(w1g§1n)§1n)...§1n)

where d is expected degree of nodes and g is some
thresholding function. Suppose Y! ~ Ber(q). Thenup to a
constant,

By [V - Y] & ~Hop (w)

where the Hamiltonian

.....
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Take-aways

» ML algorithms and spin glass systems have some
similarities but not entirely analogous — weights and graph
connectivity are still quite different notions.

» [2] conjectures that a more universal yet undiscovered
phenomenon exists, and ML algorithms and spin glasses
are mere special cases of it.

» Statistical mechanics is a subject worth studying to
facilitate (mean-field) analysis of algorithms with random
features on high-dimensional problems.
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