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Motivation

Nonconvex Optimization
We aim to solve the following nonconvex optimization problem:

min
x

F (x) = E [f (x; ξ)]

where ξ is sampled from some distribution D.

Stochastic Gradient Descent and its Variants
We evaluate the noisy gradient and update by

x(k)
= x(k−1)

− η∇f (x(k−1); ξk)

where η is step-size/learning rate, and noise ξk independent of
the sigma algebra generated up to x(k−1).

Notice that x(k) forms a discrete-time Markov process with laws
determined by ξ (and hence time-homogeneous).
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Diffusion Approximations

Rescaled Random Walk
Consider X1,X2, . . . i.i.d. centered random variables with unit
variance. Write Sn = ∑

n
i=1 Xi .

Then

W (n)
(t) ∶=

S⌊nt⌋
√

n
d
→W (t) ∼ N (0, t) .

Note that W (n) (1)
d
→ N (0,1) by classical CLT.

Donsker’s Theorem, Functional CLT
Consider X1,X2, . . . i.i.d with distribution F . Define the empirical
distribution function Fn (x) = 1

n ∑
n
i=1 1Xi<x .

Then

Gn (x) =
√

n (Fn (x) − F (x))
d
→ N (0,Σt)

where the covariance Σt
Cov (G (s) ,G (t)) = min{F (s) ,F (t)} − F (s)F (t).
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Take-aways from FCLT

▸ Discrete processes, properly scaled, can be approximated
by Brownian motions weakly.

For example, the rescaled
random walk (mean µ and covariance Σ in general)
satisfies

S⌊nt⌋
d
≈ µnt +

√
nΣB (t)

▸ Continuous mapping principle applies (e.g. h (Xt) where h
is continuous).

▸ Identify scaled means and covariances to derive an SDE
for the approximant.
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Pros and Cons

Why approximations?

▸ Diffusion is easier to study than discrete processes.

▸ One can prove concentration results to learn about
convergence rates, e.g. Komlós–Major–Tusnády
approximation [6] that improves Donsker’s theorem.

▸ For variants of SGD, only the functional form changes. The
approximation approach is general. (see Momentum SGD
as another example [5]).

x(k)
= x(k−1)

− η∇f (x(k−1); ξk) + µ (x(k−1)
− x(k−2)

)

(This gives rise to an Ornstein-Uhlenbeck process which
has a closed form analytical solution.)

Questions to address
Convergence, rate of convergence, accuracy (in what sense?)
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Back to SGD

Diffusion Approximations of SGD

min
x

F (x) = E [f (x; ξ)]

x(k)
= x(k−1)

− η∇f (x(k−1); ξk)

[3] showed that the discrete Markov process x(k) can be
approximated (in the sense of weak accuracy) by the scaled
solution X (kη) to the SDE (for finite time [0,T ])

dX (s) = b (X (s))ds +
√
ηS (X (s))dB (s) , X (0) = x(0)

b (x) = −∇F (x) −
1
4
η∇ ∣∇F (x)∣2

S (x) =
√

var (∇f (x; ξ))



How to get this SDE?

Basic technique [1, 2] to turn the stochastic algorithm around
some local optimum x∗ into some SDE

x(k)
= x(k−1)

− η∇f (x(k−1); ξk)

1. Work with error terms, i.e. normalize the variable by

u(k)
η =

x(k)
η − x∗
√
η

, as Var(x
⌊

1
η
⌋
− x∗) = O (η) .

2. Get the true gradient ∇F into the equation to form a
martingale difference sequence

γ(k)
η = ∇F (x(k)

η ) −∇f (x(k)
η , ξk)

3. Identify the variance of all noises in the current setting.
4. Take η → 0 for the discretization scheme.
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