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The Famous Generative Adversarial Network (GAN)

I Two neural networks: generator Gθ : Z → X and the
discriminator Dα : X → R

I Two spaces: latent space Z and data space X . Usually Z is a
multivariate Gaussian, that is z ∈ Z means z ∼ pz for a
multivariate Gaussian distribution pz

I Given a value function V (Gθ,Dα), the GAN problem is:

min
θ

max
α

V (Gθ,Dα) (1)
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Value Functions and Induced Loss Functions

How do we choose V (Gθ,Dα)? Make an assumption!

min
θ

max
α

V (Gθ,Dα) = min
θ

F (Gθ) (2)

for some F . Given this assumption, if one uses vanilla GAN’s value
function where p∗ is the real distribution:

V (Gθ,Dα) = Ex∼p∗ [logDα(x)]+Ez∼pz [log (1− Dα (Gθ(z)))] (3)

induces the value function

1

2

(
KL

(
p∗
∣∣∣∣∣∣∣∣p∗ + pθ

2

)
+ KL

(
pθ
∣∣∣∣∣∣∣∣p∗ + pθ

2

))
(4)
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(Continued)

However, for vanilla GAN, ∇θV (Gθ,Dα)→ 0 as Dα approaches
the optimal discriminator D∗. Okay, well then, we try this instead:

V (Gθ,Dα) = Ex∼p∗ [Dα(x)]− Ez∼pz [Dα (Gθ(z))] (5)

Then, by the dual formulation of Optimal Transport, we get the
value function

W1

(
p∗, pθ

)
= max
‖Dα‖L≤1

V (Gθ,Dα) (6)
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Wasserstein Distance (for the Monge problem)
The Monge problem of Optimal Transort uses the change of
variables formula from Calculus. That is, given two probability
measures µ and ν and a diffeomorphic mapping T , such that
T#µ = ν: ∫

A
µ(x) =

∫
A
ν(T (x))JT (x) (7)

for all measurable A ⊂ Ω where J designates the Jacobian of the
mapping T .
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Wasserstein Distance (a whirlwind tour)

Now we compute the horizontal distance by finding the map T
that takes the least amount of work to move from a point x to y ,
like “shoveling dirt”:

dist(µ, ν) = inf
T

∫
Ω
c(x ,T )dµ(x) (8)

such that T satisfies the change of variables formula:∫
A
µ(x) =

∫
A
ν(T (x))JT (x) (9)

We get W1 by choosing c(x , y) = d(x , y).
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Kantorovich-Rubinstein distance

W1(µ, ν) := inf
T#µ=ν

∫
Ω
‖x − y‖ dµ(x) (10)

1. Introduce Lagrange multipliers f and g , so this becomes a
sup inf problem.

2. Switch to an inf sup problem (strong duality)

sup
f (x)+g(y)≤‖x−y‖

[Ex∼p[f (x)] + Ey∼q[g(y)]] (11)

where dµ = p(x)dx and dν = q(y)dy .

3. Now argue that optimizing over the class of 1-Lipschitz
functions h is equal to this

W1(µ, ν) = sup
‖h‖L≤1

[Ex∼p[h(x)]− Ey∼q[h(y)]] (12)
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Whistleblowers

I In Kodali et al., 2017 and Fedus et al., 2017, merely
“controlling the Lipschitz constant of the discriminator may
improve GAN training regardless of the statistical distance
used”, and “improved performance observed in WGAN-GP
was simply due to the gradient penalty term and not
connected to the Wasserstein distance”.

I In Lucic at al., 2017 across many different GAN loss
functions, there is a sensitivity to hyperparameters, and “no
single loss function consistently outperforms the others. In
particular, it was shown that given the right hyperparameter
configuration, vanilla GAN can achieve a comparable or better
performance than WGAN-GP.”
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Possible issues with WGAN you may or may not have
noticed...

1. Assumption made above that discriminator is optimal at each
step in the minimax computation

2. Computationally impossible to optimize over the set of all
Lipschitz-1 functions

3. Do not have access to p∗ and pθ, but only finite samples (size
n)
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WGAN-Gradient Penalty (GP)

Introduced in (Gulrajani et al., 2017). Define:

V
(
Dα, p

∗
n, p

θ
n

)
:= Ex∼p∗n [Dα(x)]− Ex∼pθn [Dα(x)] (13)

R
(
Dα, p

∗
n, p

θ
n

)
:= Ex∼τ

[
(‖∇xDα(x)‖ − 1)2

]
(14)

where τ is a uniform distribution sampled from the lines
connecting xi sampled from p∗ and x̃i sampled from pθ.

Then, perform ND steps of gradient ascent with respect to
LD(α) := V

(
Dα, p

∗
n, p

θ
n

)
− λR

(
Dα, p

∗
n, p

θ
n

)
and NG steps of

gradient descent with respect to LG (θ) := V
(
Dα, p

∗
n, p

θ
n

)
.



Beamer

c-Transform WGAN

Introduced in (Mallasto et al., 2019b). Use c-transform value
function:

V (Gθ,Dα) = Ex∼p∗ [f (x)] + Ex∼pθ [f c(x)] (15)

where f c(x) := supy{f (y)−‖x−y‖} and the c refers to the cost
function c(x , y) = ‖x − y‖. The algorithm is the same as for
WGAN-GP, but with:

V
(
Dα, p

∗
n, p

θ
n

)
:= Ex∼p∗n [Dα(x)] + Ex∼pθn

[
D̂c
α(x)

]
(16)

where D̂c
α := miny∈supp(pθn ) ‖x − y‖ − Dα(y).
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Convergence of WGAN-GP and c-transform WGAN
Oracle estimator of the Wasserstein distance:

W ∗
1

(
p∗n, p

θ
n

)
= Ex∼p∗n [f ∗(x)]− Ex∼pθn [f ∗(x)] (17)

where f ∗ ∈ argmax‖f ‖L≤1

(
Ex∼p∗ [f (x)]− Ex∼pθ[f (x)]

)
. Another

empirical loss function, the batch estimator:

Ŵ1

(
p∗n, p

θ
n

)
= max
‖f ‖L≤1

(
Ex∼p∗n [f (x)]− Ex∼pθn [f (x)]

)
(18)
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Proof is in the pudding...
Even though for the c-transform WGAN, we have:

LG (θ) ≈ Ŵ1

(
p∗, pθ

)
(19)

and for WGAN-GP, the approximation is poor, a good
approximation of the batch Wasserstein distance does not
correspond to a good generative performance.
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I’ve fallen and I can’t get out!

Oracle estimator: O
(

1√
n

)
but it needs the

true Lipschitz-1 function f ∗ which is
prohibitively expensive. Batch estimator:
O
(
n−1/d

)
.

FALSE MINIMA OF THE BATCH
WASSERSTEIN DISTANCE. Experiment:
expected batch Wasserstein distance:

I Two samples from the target distribution

I Target distribution and repeated means

I Target distribution and geometric
k-means.
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Questions?
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(Continued)
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