
Generative Adversarial Networks (GANs)
conditional Generative adversarial Networks (cGANs)

Machine Learning Seminars - Spring 2023

Soheil Saghafi

February 8, 2023

1/26

Outline

Generative Adversarial Networks (GANs)
conditional Generative Adversarial Networks (cGANs)
Rosenbrock test function of two variables
Conclusion and Future work

Generative adversarial network (Goodfellow et al, 2014), Integration of AI and
mechanistic modeling in generative adversarial networks for stochastic inverse problems
(Parikh et al, 2020)

2/26

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) are a machine learning
framework designed by Ian Goodfellow and his colleagues in 2014.

The applications of GAN increased rapidly in different fields like:

Image processing (Editing photographs, Translating images, ...)
Fashion, art and advertising
Science (biomedical info, astrophysics, ...)
Improving cybersecurity
Improving healthcare
Video games (Generating animation models,...)
Cryptography (cipher cracking)

3/26

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs)

Figure 1: These images are created by a GAN (i.e. they are “fake” samples –
none of them are actually real people).

https://thispersondoesnotexist.com
4/26

Generative Adversarial Networks (GANs)

Generative Adversarial Network (GAN)

Generative adversarial network (GAN), is a deep neural network
architecture comprised of two neural netwoks competing one against the
other.

Generative model (G): Try to find a distribution for the samples
which is mimicking the real data distribution.

Discriminative model (D): Estimates the probability that sample
came from the training data rather than G.

The goal of the Generator (G) is to convert an initial random probability
distribution z ∼ Pz into Pg where Pg ∼ Pdata, in order to fool the
discriminator.
The role of the Discriminator (D) is to discriminate between G(z) ∼ Pg

and the samples which are coming from real dataset (x ∈ X) ∼ Pdata.

5/26

Generative Adversarial Networks (GANs)

Generative Adversarial Network (GAN)

Discriminator

Generator

𝑥 ~ 𝑃!"#"(𝑥)

z~
𝑃 $
(𝑧
) G(z) ~ 𝑃%

'𝑦 ~𝐷(𝑥)

'𝑦 ~𝐷(𝐺(𝑧))

Y= 1

Y= 0

𝑓𝑙𝑟(2 ∗ 𝐷 𝐺 𝑧) ≠ 0

Fine-Tuning

𝑓𝑙𝑟(2 ∗ 𝐷 𝑥) ≠ 1
𝑓𝑙𝑟 2 ∗ 𝐷 𝐺 𝑧 = 0
𝑓𝑙𝑟 2 ∗ 𝐷 𝑥 = 1

Figure 2: Generative Adversarial Network (GAN).

6/26

Generative Adversarial Networks (GANs)

Generative Adversarial Network (GAN) Loss Function

Cross-Entropy is a measure from the field of information theory which
calculate the difference between two probability distributions.

L(ŷ, y) = [ylog(ŷ) + (1− y)log(1− ŷ)] (1)

where ŷ is the reconstructed labels like D(x) or D(G(z)) and y is the
original one. The label for the data coming from Pdata(x) is y = 1 and the
reconstructing label after passing to the discriminator is ŷ = D(x). Based
on equation (1) we have the following:

L(D(x), 1) = log(D(x)) (2)

Likewise the data coming from the generator has the real label y = 0 and
the reconstructing label is ŷ = D(G(z)) which gives us the following:

L(D(G(z)), 0) = log(1−D(G(z))) (3)

7/26

Generative Adversarial Networks (GANs)

Generative Adversarial Network (GAN) Loss Function

(a) (b)

Figure 3: Panel a and b representing the equation 1 and 2 respectively. The cyan
color is the possible region, as we are working with the probability (i.e. D(x)
represents the probability that x came from the data rather than Pg and
D(G(z))) the probability that G(z) came from Pg rather than Pdata).

8/26

Generative Adversarial Networks (GANs)

Generative Adversarial Network (GAN) Loss Function

Discriminator role: To discriminate between the fake samples (the one
which is coming from generator (D(G(z)) = 0) and the real one
(D(x) = 1). Based on Figure 3, in order to achieve this, discriminator
should maximize log(D(x)) and log(1−D(G(z))). Thus, the
maximization term for the discriminator is like the following:

max
D

{logD(x) + log(1−D(G(z)))} (4)

Generator role: The goal of the generator is to fool the discriminator.
Thus, generator wants D(G(z)) = 1, in that case discriminator cannot
recognize the sample coming from generator and by mistake giving
D(G(z)) = 1, means the sample is coming from the real data and it is not
correct.

min
G

{log(1−D(G(z)))} = min
G

{logD(x) + log(1−D(G(z)))} (5)

9/26

Generative Adversarial Networks (GANs)

Generative Adversarial Network (GAN) Loss Function

To sum up,

We train D to maximize the probability of assigning the correct label
to both training examples and samples from G.

We simultaneously train G to minimize log(1−D(G(z)))

D and G play the following two-player minimax game with value
function V (G,D) :

min
G

max
D

V (D,G) (6)

Where

V (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))]

10/26

Generative Adversarial Networks (GANs)

Global Optimality of Pg = Pdata

We first consider the optimal discriminator D for any given generator G.
Proposition: For G fixed, the optimal discriminator D is:

D∗
G(x) =

Pdata(x)

Pdata(x) + Pg(x)
(7)

D∗
G = argmax

D

{
Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))]

}
We know that EP (x)(x) =

∫
x xPx(x) dx by substituting into above formula

we have:

V (D,G) =

∫
x
Pdata(x)log(D(x))dx+

∫
z
Pz(z)log(1−D(G(z)))dz (8)

11/26

Generative Adversarial Networks (GANs)

Global Optimality of Pg = Pdata

If the probability density function of a random variable x is given as Px(x),
it is possible to calculate the probability density function of some variable
Y = G(x). This change of variables is defined as:

PY (y) = Px(G
−1(y)) | d

dy
(G−1(y))|

Therefore,∫
z
Pz(z)log(1−D(G(z)))dz =

∫
x
Pz(G

−1(x))
dG−1(x)

dx
log(1−D(x)))dx

which is equal to the following:∫
z
Pz(z)log(1−D(G(z)))dz =

∫
x
Pg(x)log(1−D(x)))dx

where:

Pg(x) = Pz(G
−1(x))

dG−1(x)

dx
12/26

Generative Adversarial Networks (GANs)

Global Optimality of Pg = Pdata

We have shown so far that:

V (D,G) =

∫
x
Pdata(x)log(D(x))dx+

∫
z
Pz(z)log(1−D(G(z))) dz

=

∫
x
[Pdata(x)log(D(x)) + Pg(x)log(1−D(x))] dx

The optimal value for discriminator (D∗) is obtained by maximizing the
bracket. Thus, by taking derivative with respect to D(x) and setting it
equal zero we have:

d

dD(x)
[Pdata(x)log(D(x)) + Pg(x)log(1−D(x))] = 0

[
Pdata(x)

D(x)
− Pg(x)

1−D(x)

]
= 0 =⇒ D∗

G(x) =
Pdata(x)

Pdata(x) + Pg(x)

13/26

Generative Adversarial Networks (GANs)

Global Optimality of Pg = Pdata

Now in order to see if this value is a maximum or minimum we need to
take a second derivative.

d

dx

[
Pdata(x)

D(x)
− Pg(x)

1−D(x)

]
= −

(
Pdata(x)

D2(x)
+

Pg(x)

(1−D(x))2

)
< 0

This value helps us to know what would be the optimal value for the
generator. Since the role of the generator is the reverse of the
discriminator, by fixing D = D∗

G the optimal G∗ is like the following:

G∗ = argmin
G

V (D∗
G, G)

At this point we want to prove the optimization problem has a unique
solution G∗ which satisfies Pg = Pdata.

14/26

Generative Adversarial Networks (GANs)

Global Optimality of Pg = Pdata

Theorem: The global minimum of the criterion G∗ = argminV (D∗
G, G)

G
is achieved if and only if Pg = Pdata. At that point G

∗ value is −log4.
Proof:
By substituting the optimal value of the D∗

G in G∗ = argminV (D∗
G, G)

G
we obtain:

V (D∗
G, G) = argmin

{∫
x

[Pdata(x)log(D
∗
G(x)) + Pg(x)log(1−D∗

G(x))] dx

}
=

argmin

{∫
x

[Pdata(x)log(
Pdata(x)

Pdata(x) + Pg(x)
) + Pg(x)log(

Pg(x)

Pdata(x) + Pg(x)
)] dx

}

By adding and subtracting (log2)Pdata(x) and (log2)Pg(x) in the above equation
we obtain:

15/26

Generative Adversarial Networks (GANs)

Global Optimality of Pg = Pdata

= argmin

{∫
x
[(log2− log2)Pdata(x) + Pdata(x)log(

Pdata(x)

Pdata(x) + Pg(x)
)+

(log2− log2)Pg(x) + Pg(x)log(
Pg(x)

Pdata(x) + Pg(x)
)] dx

}

= argmin

{
(−log2)

∫
x
(Pg(x) + Pdata(x))dx+

∫
x
Pdata(x)[log2+

log(
Pdata(x)

Pdata(x) + Pg(x)
)]dx+

∫
x
Pg(x)[log2 + log(

Pg(x)

Pdata(x) + Pg(x)
)] dx

}

= argmin

{
(−log4) +

∫
x
Pdata(x)[log(

Pdata(x)
Pdata(x)+Pg(x)

2

)]dx+

∫
x
Pg(x)[log(

Pg(x)
Pdata(x)+Pg(x)

2

)] dx

}
16/26

Generative Adversarial Networks (GANs)

Global Optimality of Pg = Pdata

Based on Kullback-Leibler Divergence and Jensen Shanon Divergence
formula:

KL(p||q) =
∫

p(x)log(
p(x)

q(x)
)dx

JSD(p||q) = 1

2
{KL(p||M) +KL(q||M)} , M =

p+ q

2

We have:

V (D∗
G, G) = argmin {−log4 + 2 JSD(Pdata(x)||Pg(x))}

JSD = 0 ↔ Pg(x) = Pdata(x).

JSD = 0 →G∗ = −log4.

Pg(x) = Pdata(x) →D∗
G = 1

2 .

D∗
G = 1

2 →G∗ = −log4.

17/26

Generative Adversarial Networks (GANs)

Pedagogical explanation of the GAN approach

(a) Adversarial pair near convergence: Pg is similar to Pdata and D is
a partially accurate classifier.

(b) In the inner loop of the algorithm, D is trained to discriminate

samples from data, converging to D∗
G(x) =

Pdata(x)

Pdata(x)+Pg(x)
.

(c) After an update to G, gradient of D has guided G(z) to flow to
regions that are more likely to be classified as data.

(d) Pg(x) = Pdata(x), i.e. D
∗
G(x) =

1
2 .

18/26

conditional Generative Adversarial Networks (cGANs)

conditional Generative Adversarial Networks (cGANs)

GAN has some drawbacks, one of which is having no control over the
output. We can fix this issue by passing a conditional label to the
objective function in a conditional GAN (cGAN).

Discriminator

Generator

𝑋

𝑍 𝑋!

#𝑦 ~𝐷(𝑋)

#𝑦 ~𝐷(𝑋!)

Y= 1

Y= 0

𝑓𝑙𝑟(2 ∗ 𝐷(𝑋!)) ≠ 0

Fine-Tuning

𝑓𝑙𝑟(2 ∗ 𝐷 𝑋) ≠ 1
𝑓𝑙𝑟 2 ∗ 𝐷 𝑋! = 0
𝑓𝑙𝑟 2 ∗ 𝐷 𝑋 = 1

𝑌, 𝑋

𝑌, 𝑋!

⊕
𝑌

⊕

Figure 4: conditional Generative Adversarial Network (cGAN).

19/26

conditional Generative Adversarial Networks (cGANs)

conditional Generative Adversarial Network (cGAN)

In general we have the following minimax problem:

min
G

max
D

V (D,G)

Where V (D,G) for the GAN is:

V (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))]

While for the cGAN we need to insert a conditional label y to above
objective function.

V (D,G) = Ex∼Pdata(x)[logD(x|y)] + Ez∼Pz(z)[log(1−D(G(z|y)))]

20/26

Rosenbrock test function of two variables

Rosenbrock test function of two variables

Figure 5: The mechanistic model was represented by the Rosenbrock function
with two input parameters x1 and x2: M(X) = 100(x2 − x2

1)
2 + (1− x1)

2, where
X = (x1, x2).

21/26

Rosenbrock test function of two variables

The cGAN is trained on distributions of x ∼ qX and y = M(x),
where qX is the prior distribution of the parameters.

Then we train the c-GAN on this generated data.

Here, we assume that the observation PY is a truncated Gaussian
with the mean at 350.

We sample parameters of the model y ∼ PY and feed them to the
sampling network to obtain the final distribution PX in X.

We need to check if the distribution of parameters PX is coherent to
the distribution of observations PY .

We pass parameters x ∼ PX through the original model M and
compare the resulting distribution against the observations PY .

22/26

Rosenbrock test function of two variables

A1 A2

Figure 6: Panel (A1): Final distribution of the model PX which is provided by
passing the sample parameter of the model y ∼ PY to the sampling network.
Panel (A2): PX is coherent with the observation’s parameters (PY).

23/26

Conclusion and Future work

Conclusion and Future work

Generative Adversarial Network (GAN) has received attention from a
wide range of fields, including image processing, science,
cryptography, video games, and others.

conditional Generative Adversarial Network (cGAN) is a novel
parameter inference technique.

If the test or target vector which is passed to the generator lies in the
area that cGAN trained on, the final distribution of the generator is
able to produce some samples which are very close to the original one
in the parameter space.

However, the cGAN may fail if the target features do not follow the
same pattern which the cGAN learned on. Although the generator
tries to get as close as possible to the features by producing some
samples, there is no guarantee it will reproduce the same features.

24/26

References

Goodfellow, Ian and Pouget-Abadie, Jean and Mirza, Mehdi and Xu,
Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron
and Bengio, Yoshua,“Generative adversarial nets” Advances in neural
information processing systems, Vol. 27, pp. 2672–2680, 2014.

Jaimit Parikh and James Kozloski and Viatcheslav Gurev, ”Integration
of AI and mechanistic modeling in generative adversarial networks for
stochastic inverse problems” arXiv, 2020.

25/26

Thanks for your attention

26/26

	Generative Adversarial Networks (GANs)
	conditional Generative Adversarial Networks (cGANs)
	Rosenbrock test function of two variables
	Conclusion and Future work
	
	

