Find the derivative dydx for:
a) y=x2+sec2(x)
b) y=log5(csc(x))
c) y=tan2(sin(3x))
a) y=x2+sec2(x)=(x2+sec2(x))1/2dydx=12(x2+sec2(x))−1/2×ddx(x2+sec2(x))=12(x2+sec2(x))−1/2×(2x+2sec(x)×ddxsec(x))=12(x2+sec2(x))−1/2×(2x+2sec2(x)tan(x))dydx=x+sec2(x)tan(x)x2+sec2(x)dydx=x+sec2(x)tan(x)x2+sec2(x)
b) y=log5(csc(x))dydx=1csc(x)ln(5)×ddxcsc(x)=1csc(x)ln(5)×−cot(x)csc(x)dydx=−cot(x)ln(5)dydx=−cot(x)ln(5)
c) y=tan2(sin(3x))dydx=2tan(sin(3x))×ddxtan(sin(3x))=2tan(sin(3x))×sec2(sin(3x))×ddxsin(3x)=2tan(sin(3x))×sec2(sin(3x))×cos(3x)×ddx3x=2tan(sin(3x))×sec2(sin(3x))×cos(3x)×3dydx=6tan(sin(3x))sec2(sin(3x))cos(3x)dydx=6tan(sin(3x))sec2(sin(3x))cos(3x)